On the Local Correctabilities of Projective Reed-Muller Codes

نویسنده

  • Sian-Jheng Lin
چکیده

In this paper, we show that the projective Reed-Muller (PRM) codes form a family of locally correctable codes (LCC) in the regime of low query complexities. A PRM code is specified by the alphabet size q, the number of variables m, and the degree d. When d ≤ q−1, we present a perfectly smooth local decoder to recover a symbol by accessing γ ≤ q symbols to the coordinates fall on a line. There are three major parameters considered in LCCs, namely the query complexity, the message length and the code length. This paper shows that PRM codes are shorter than generalized Reed-Muller (GRM) codes in LCCs. Precisely, given a GRM code over a field of size q, there exists a class of shorter codes over a field of size q − 1, while maintaining the same values on the query complexities and the message lengths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projective Segre codes

Let K = Fq be a finite field. We introduce a family of projective Reed-Mullertype codes called projective Segre codes. Then we study their basic parameters and show that they are direct products of projective Reed-Muller-type codes. It turns out that the direct product of two projective Reed-Muller-type codes is again a projective Reed-Muller-type code. As a consequence we recover some results ...

متن کامل

Remarks on low weight codewords of generalized affine and projective Reed-Muller codes

A brief survey on low weight codewords of generalized Reed-Muller codes and projective generalized Reed-Muller codes is presented. In the affine case some information about the words that reach the second distance is given. Moreover the second weight of the projective Reed-Muller codes is estimated, namely a lower bound and an upper bound of this weight are given.

متن کامل

Direct products in projective Segre codes

Let K = Fq be a finite field. We introduce a family of projective Reed-Muller-type codes called projective Segre codes. Using commutative algebra and linear algebra methods, we study their basic parameters and show that they are direct products of projective Reed-Mullertype codes. As a consequence we recover some results on projective Reed-Muller-type codes over the Segre variety and over proje...

متن کامل

On Low Weight Codewords of Generalized Affine and Projective Reed - Muller Codes ( Extended abstract )

We propose new results on low weight codewords of affine and projective generalized Reed-Muller codes. In the affine case we give some results on codewords that cannot reach the second weight also called the next to minimal distance. In the projective case the second distance of generalized Reed-Muller codes is estimated, namely a lower bound and an upper bound of this weight are given.

متن کامل

On low weight codewords of generalized affine and projective Reed-Muller codes

We propose new results on low weight codewords of affine and projective generalized Reed-Muller codes. In the affine case we prove that if the size of the working finite field is large compared to the degree of the code, the low weight codewords are products of affine functions. Then in the general case we study some types of codewords and prove that they cannot be second, thirds or fourth weig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1702.02671  شماره 

صفحات  -

تاریخ انتشار 2017